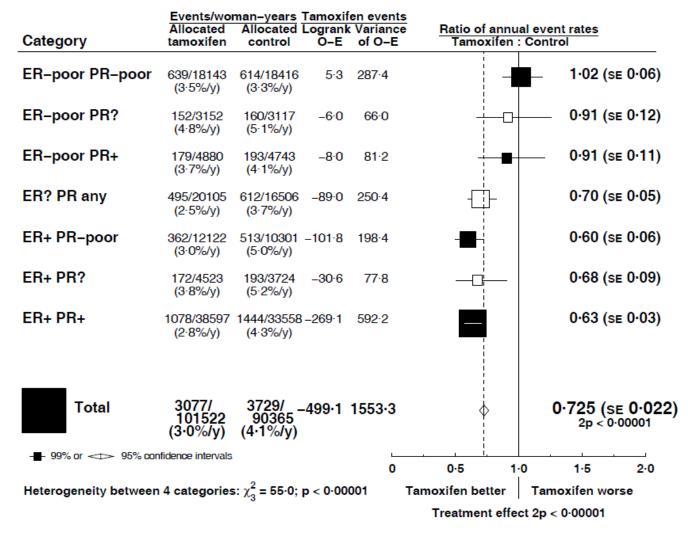
Overcome of Endocrine Resistance

Aichi Cancer Center Hiroji Iwata

2019 GBCC 2019.4.25


Two topics in this presentation

 Endocrine resistance for early breast cancer (response guide therapy)

 Endocrine resistance for advanced/metastatic breast cancer (new drug development)

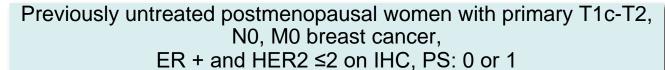
Resistance and responsibility for endocrine therapy

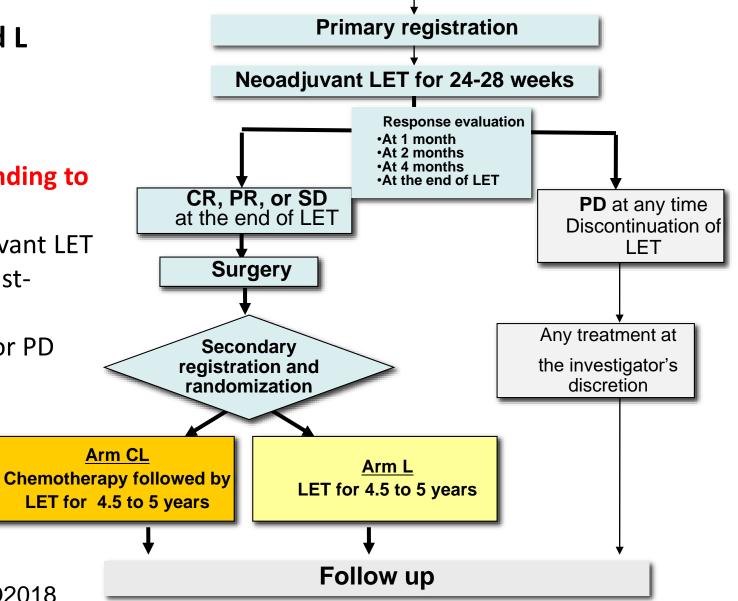
RECURRENCE in trials of tamoxifen for about 5 years versus the same management, but no tamoxifen

Lancet 2011; 378: 771-84

ER status is predictive marker of endocrine therapy

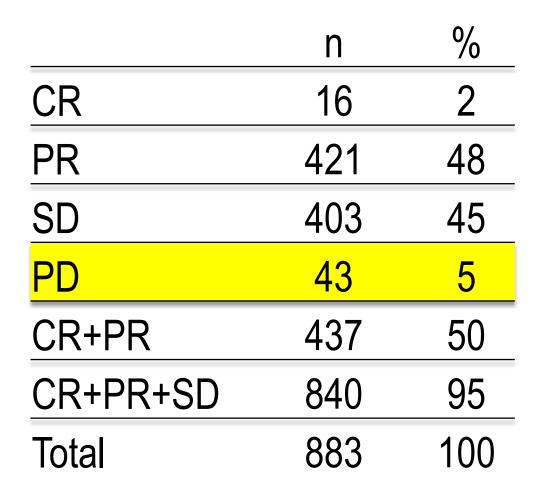
Is endocrine therapy responsive in all breast cancer patients with ER positive?


NEOS Study design

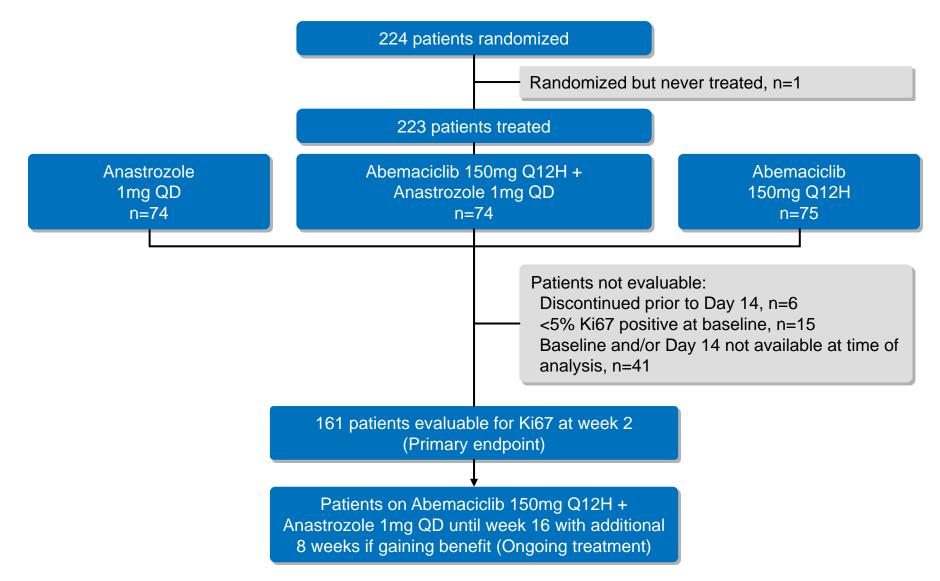

Primary endpoint : DFS at each CL and L

Secondary endpoints:

- OS at each arms
- Percentage of patients clinically responding to neoadjuvant LET
- Histological tumor response to neoadjuvant LET
- Percentage of patients undergoing breastconserving surgery
- DFS/OS in patients showing CR, PR, SD or PD response to neoadjuvant LET
- Safety
- HRQOL
- Cost-effectiveness

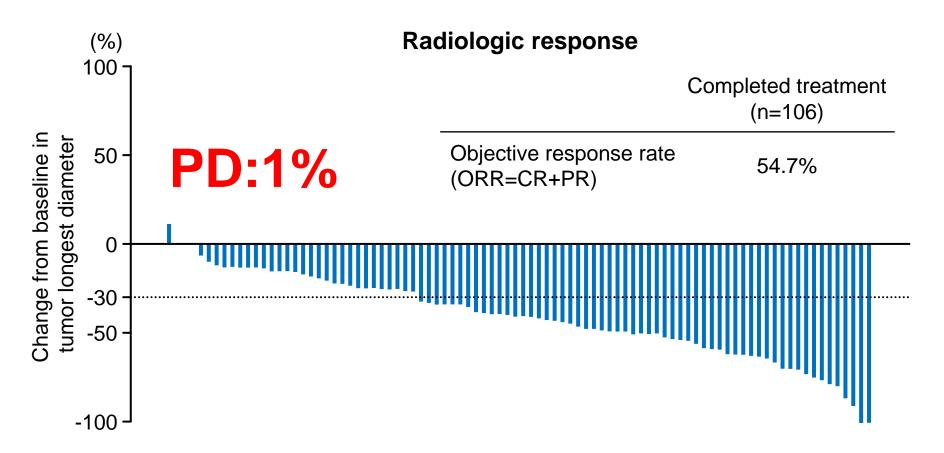


Results: Clinical response


Clinical response to NET was defined as follows: **CR:** target tumor has disappeared or completely undergone tumor-related secondary changes **PR**: largest diameter of the target tumor reduced by \geq 30% from baseline **SD:** largest diameter of the target tumor by <30% or increased by <20% from baseline **PD:** largest diameter of the target tumor increased by $\geq 20\%$ from baseline

The treatment duration of NET (LET): median 179 days The treatment duration of NET in PD cases: median 109 days (27-254 days)

ongress


neoMONARCH consort diagram

Abbreviations: Q12H=every 12 hours; QD=once daily

Hurvitz S, et al. SABCS2016 Abst #S4-06

neoMONARCH RECIST response data over time

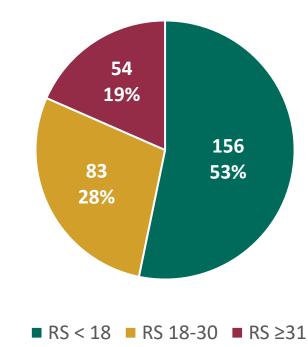
- At time of analysis:
 - Complete pathologic response in three (3.2%) of 95 patients that underwent surgery.
 - One patient discontinued therapy for progressive disease (20.7% change from baseline in tumor size at week 12).

Hurvitz S, et al. SABCS2016 Abst #S4-06

Primary resistance for ER+, HER2 -ve PBC

The frequency of resistance by endocrine therapy alone : 5%

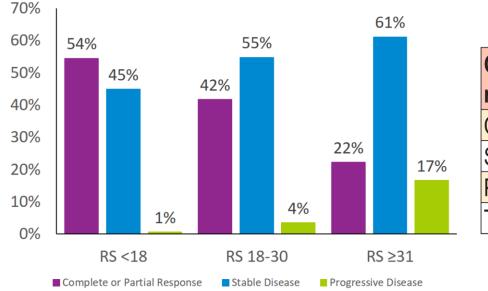
The frequency of resistance by endocrine + CDK4/6i: 1%


What is predictive marker of primary resistance by endocrine therapy alone?

TransNEOS study

Patient Demographics and Disease Characteristics

Variable	Statistic	N=294	Variable	Statistic	N=294
Age, y	Median (range)	63 (49-75)	ER by RT-PCR	Median (range)	11.7 (5.7-14.6)
	<50	1 (<1.0%)	ER category	Positive (≥6.5)	292 (99.3%)
	50 to 60	93 (31.6%)		Negative (<6.5)	2 (<1.0%)
	>60 to 70	168 (57.1%)	PR by RT-PCR	Median (range)	7.1 (2.6-11.4)
	>70	32 (10.9%)	PR category	Positive (≥5.5)	210 (71.4%)
T-stage	T1c	44 (15.0%)		Negative (<5.5)	84 (28.6%)
	T2	250 (85.0%)	HER2 category	Negative (<10.7)	234 (79.6%)
Nuclear grade	1	194 (66.0%)		Positive (≥11.5)	9 (3.1%)
	2	59 (20.1%)		Equivocal	51 (17.3%)
	3	27 (9.2%)		(10.7 to <11.5)	
	Missing	14 (4.8%)	Recurrence	Median (range)	17 (0-68)
Tumor size, mm	Median (range)	25 (20-65)	Score result		
Ki-67 by IHC, %	Median (range)	16.7 (0.0, 82.5)			
Ki-67 category	<10%	81 (27.6%)			
	10% to 30%	115 (39.1%)			
	>30%	60 (20.4%)			
	Missing	38 (12.9%)			


Distribution of Patients by RS Group (n=294)

- Of 333 tumor samples submitted, 294 were eligible with evaluable RS results and clinical response data.
- For the patients included in the TransNEOS study (N=294), 53% had RS <18, 29% had RS 18-30, and 18% had RS ≥31.

Iwata H, et al. BCRT 173(1);123-133: 2019

Primary Analysis: Recurrence Score Group Is Associated With Rate of Clinical Response to NAHT

Percent Clinical Response to NAHT by Recurrence Score Group (N=294)

Clinical response, n	RS <18	RS 18-30	RS ≥31	Total
CR + PR	85	35	12	132
SD	70	46	33	149
PD	1	3	9	13
Total	156	84	54	294

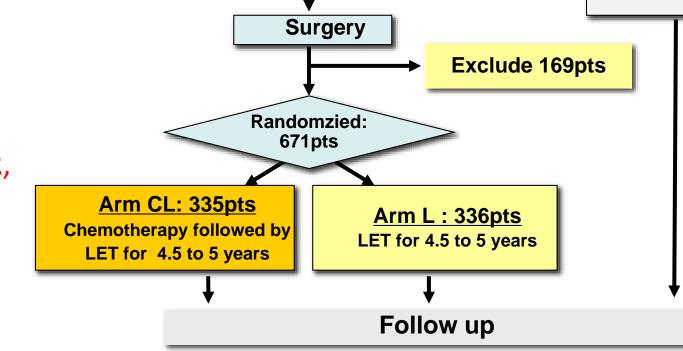
Primary Pre-Specified Endpoint was met:

- Recurrence Score group (RS<18 vs RS≥31) was significantly associated with rate of clinical response (CR+PR) (chi-square test, p<0.001).
- With the RS 18-30 group included, RS group remained significantly associated with clinical response (Cochran-Armitage trend test, p<0.001).

Iwata H, et al. BCRT 173(1);123-133: 2019

NEOS Study design

May 2008 and June 2013 from 100 institutions in Japan (median follow-up: 5.9 years)


The reason of withdraw (21pts) : refused by pts:14pts, not eligible:2pts, transference:2pts, unknown:3pts

Secondary endpoints:

MUNICH 2018

- Percentage of patients clinically responding to neoadjuvant LET
- DFS/OS in patients showing CR, PR, SD or PD response to neoadjuvant LET

ongress

CR, PR, or SD

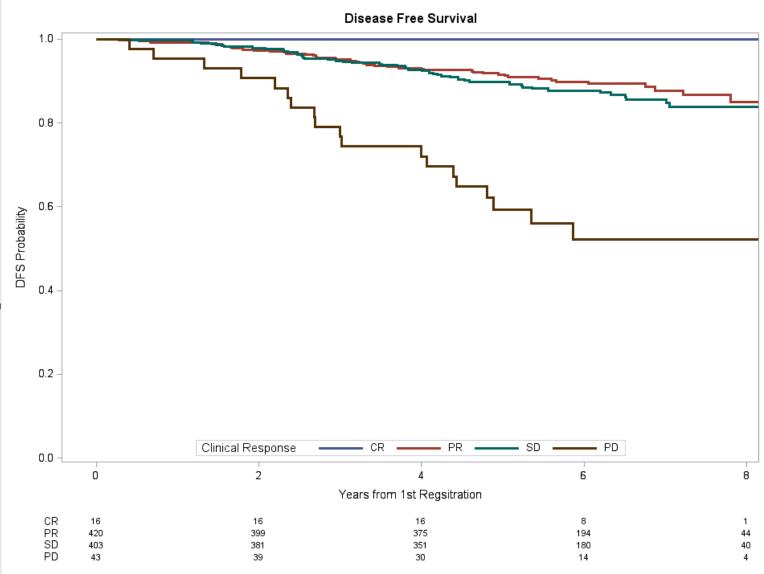
at the end of LET

1st registration : 904

Neoadjuvant LET for 24-28 weeks

883pts

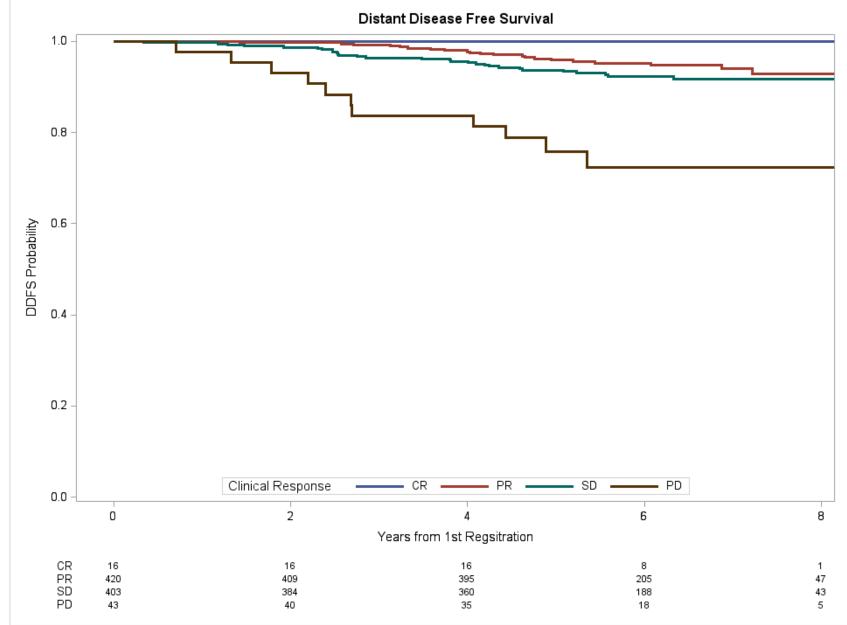
Withdraw:21 pts


PD:43pts

DFS IN EACH GROUPS ACCORDING TO CLINICAL RESPONSE

DFS is defined as the time from the date of primary enrollment until the date of the first event (recurrence in the ipsilateral preserved breast, the ipsilateral chest wall, the regional lymph node, or distant organ metastasis, or secondary cancer without cutaneous basal cell carcinoma/spindle cell carcinoma, and uterine carcinoma *in situ* or all-cause deaths)

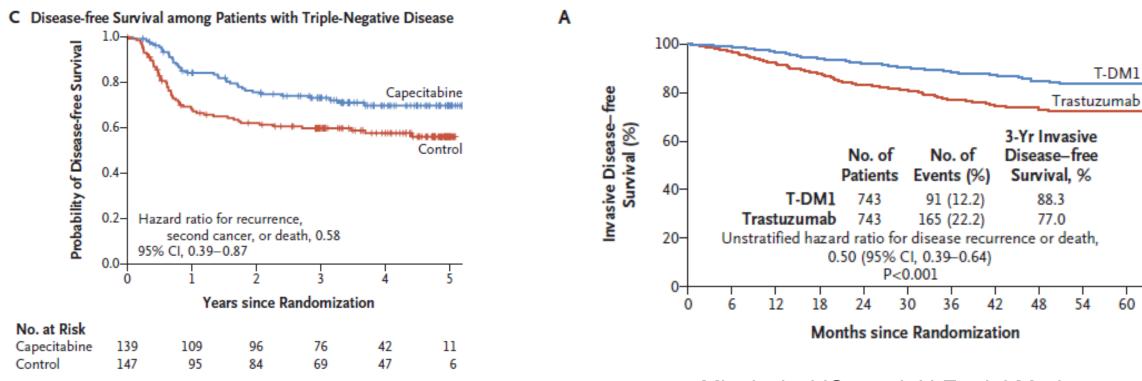
DFS in PD pts to NET were statistically significantly worse than CR, PR, SD pts (p<0.0001, hazard ratio 4.73 (95% CI:2.89-7.75).



DDFS IN EACH GROUPS ACCORDING TO CLINICAL RESPONSE

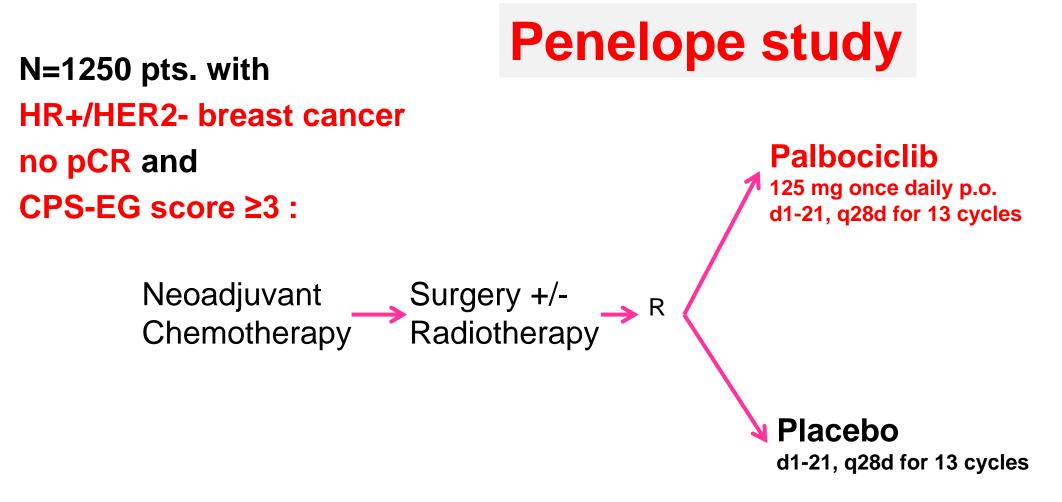
DDFS is defined as the time from the date of primary enrollment until the date of the first event in distant organ (including bone, liver, lung, et al)

DDFS in PD pts to neoadjuvant ET were statistically significantly worse than CR, PR, SD pts (p<0.001, hazard ratio 4.83 (95% CI:2.52-9.29).



Respose guilded therapy by neoadjuvant chemotherapy

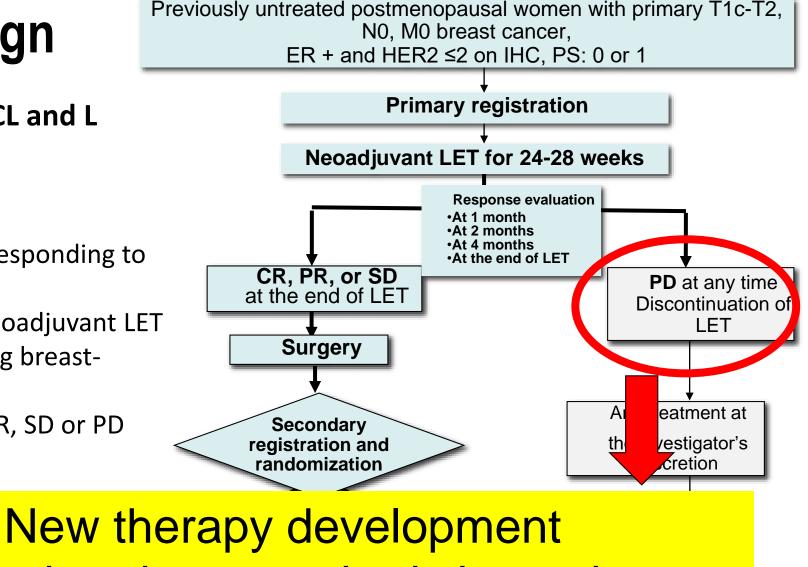
CREAT-X (TN)



Masuda N, etal. N Engl J Med 2017;376:2147-59

Minckwitz VG, et al. N Engl J Med 2018.

Respose guilded therapy by neoadjuvant chemotherapy


All patients will receive concommitantly endocrine therapy according to local standards

NEOS Study design

Primary endpoint : DFS at each CL and L

Secondary endpoints:

- OS at each arms
- Percentage of patients clinically responding to neoadjuvant LET
- Histological tumor response to neoadjuvant LET
- Percentage of patients undergoing breastconserving surgery
- DFS/OS in patients showing CR, PR, SD or PD response to neoadjuvant LET
- Safety
- HRQOL
- Cost-effectiveness

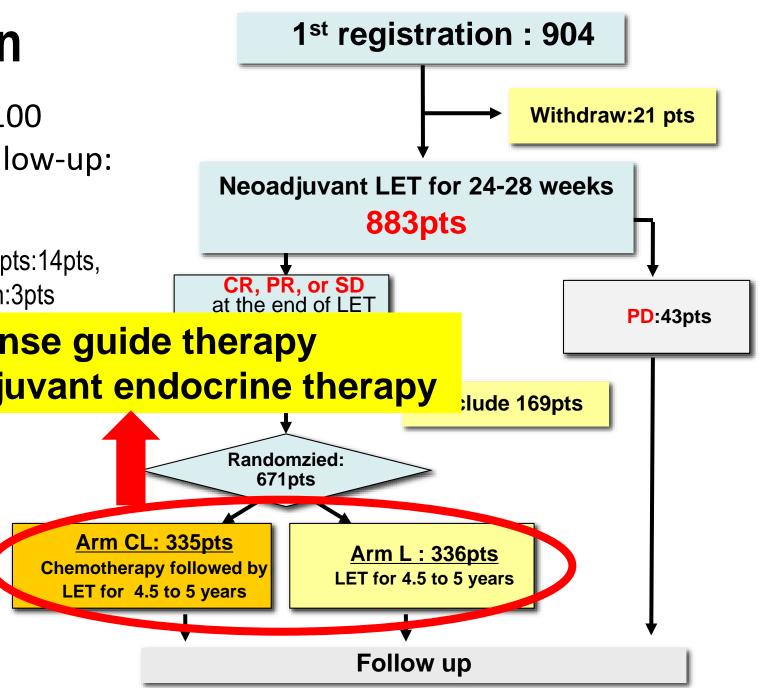
other than standard chemotherapy

Follow up

Iwata H, et al. ESMO2018

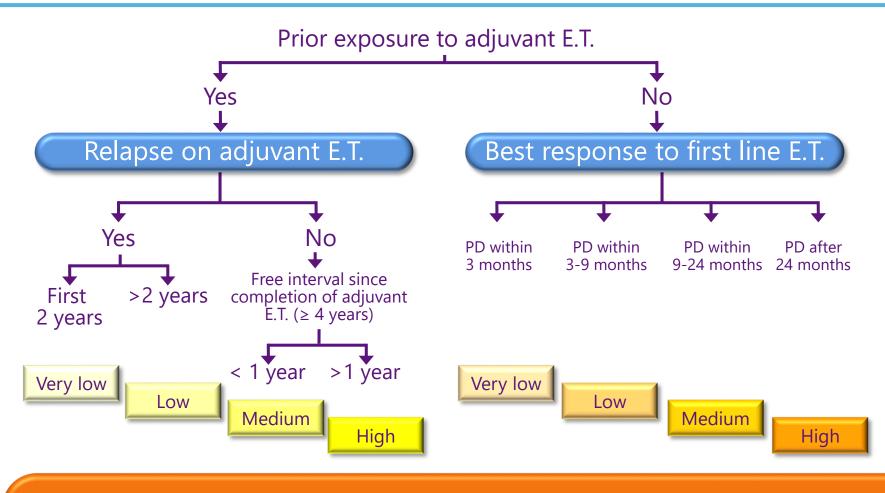
NEOS Study design

May 2008 and June 2013 from 100 institutions in Japan (median follow-up: 5.9 years)


The reason of withdraw (21pts) : refused by pts:14pts, not eligible:2pts, transference:2pts, unknown:3pts

Secondary endp

- using neoadjuvant endocrine therapy • Percentage o clinically responding to **Randomzied:** neoadjuvant LET 671pts
- DFS/OS in patients showing CR, PR, SD or PD response to neoadjuvant LET



Two topics in this presentation

 Endocrine resistance for early breast cancer (response guide therapy)

 Endocrine resistance for advanced/metastatic breast cancer (new drug development)

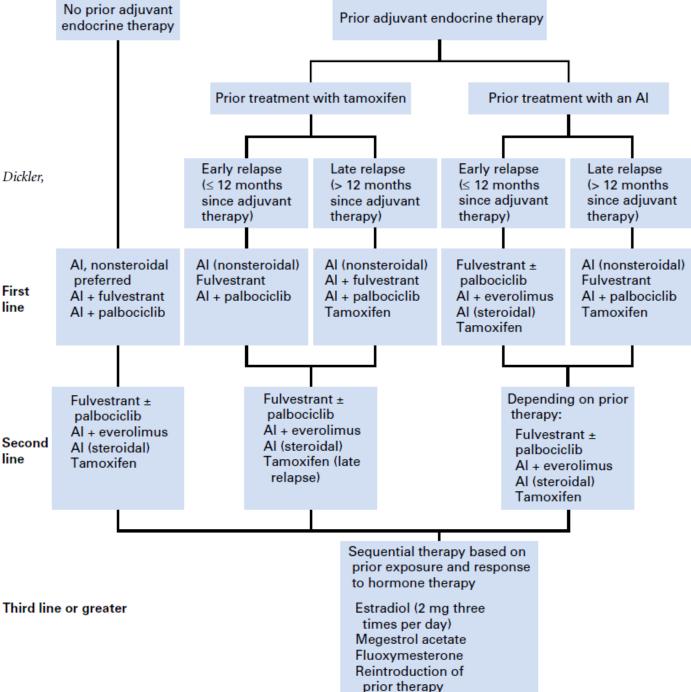
The responsibility of endocrine therapy for MBC

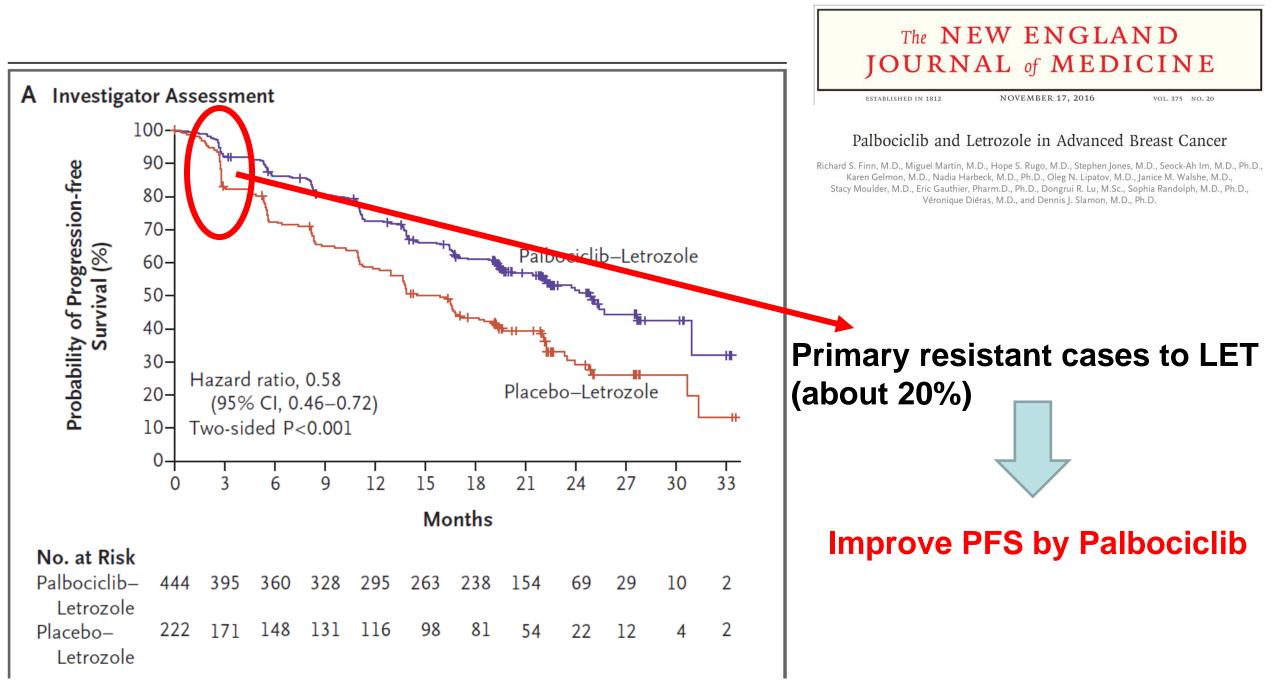
Gradient of response probabilities to further hormonal manipulation

Piccart MJ. 2013 ABC-2 Consensus Session

JOURNAL OF CLINICAL ONCOLOGY

ASCO SPECIAL ARTICLE

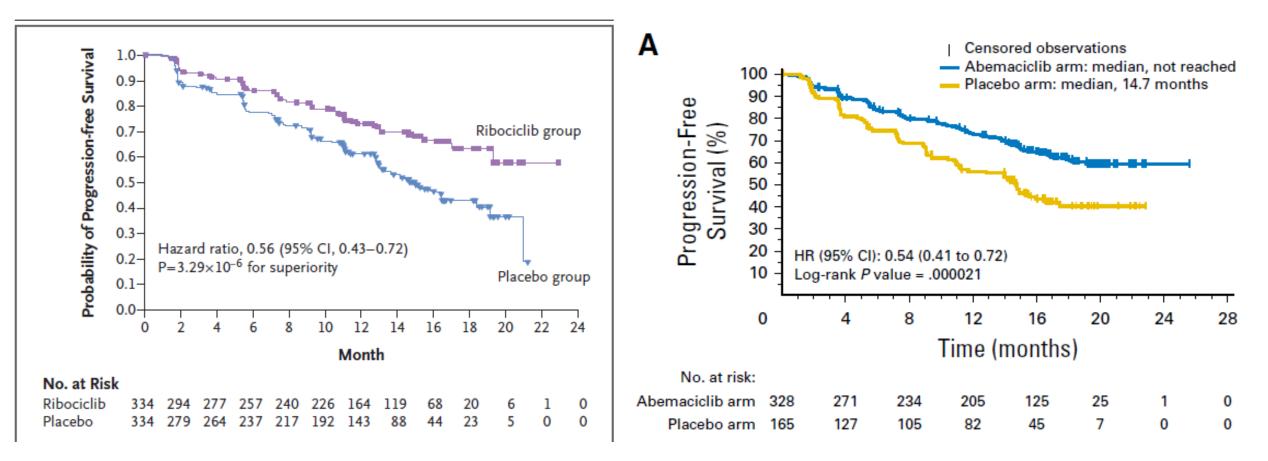

line


line

Endocrine Therapy for Hormone Receptor–Positive Metastatic Breast Cancer: American Society of Clinical Oncology Guideline

Hope S. Rugo, R. Bryan Rumble, Erin Macrae, Debra L. Barton, Hannah Klein Connolly, Maura N. Dickler, Lesley Fallowfield, Barbara Fowble, James N. Ingle, Mohammad Jahanzeb, Stephen R.D. Johnston, Larissa A. Korde, James L. Khatcheressian, Rita S. Mehta, Hyman B. Muss, and Harold J. Burstein

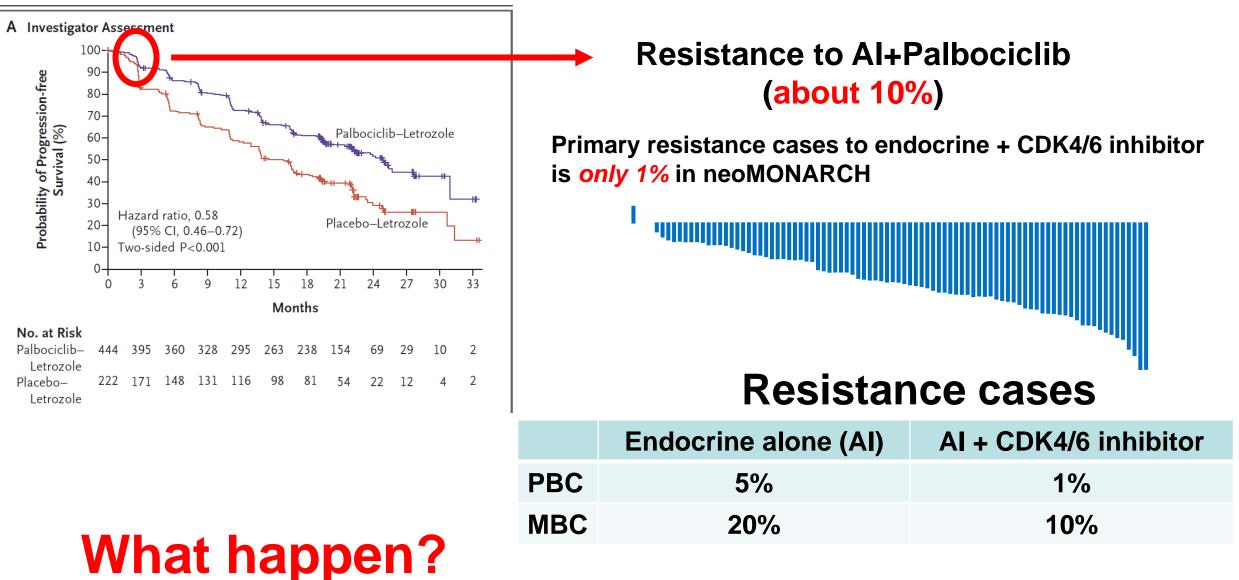
Fig 1. Hormone therapy for postmenopausal women with hormone receptor-positive metastatic breast cancer by line of therapy and adjuvant treatment. NOTE. Use of pal-

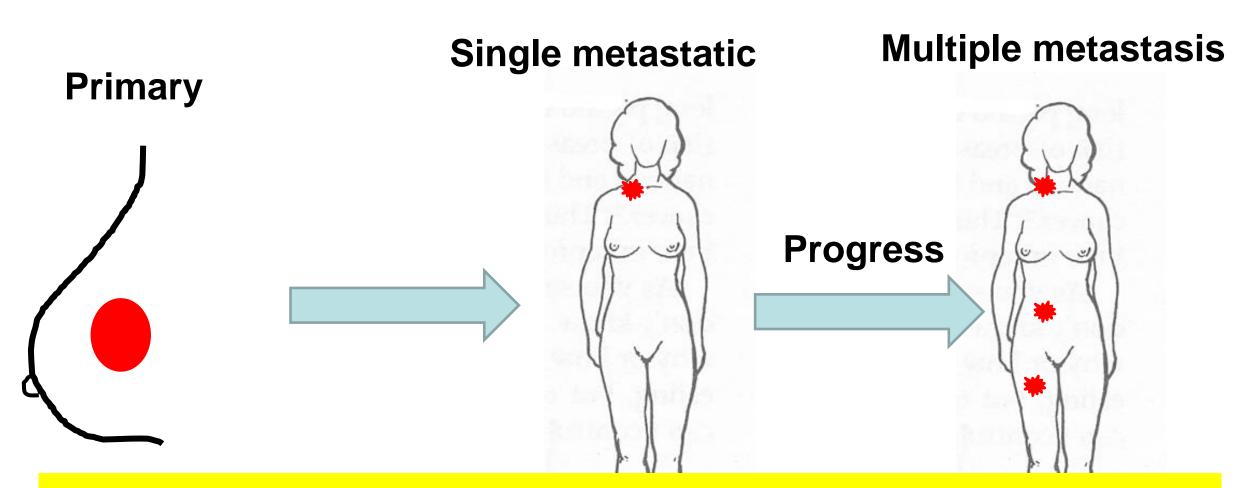

ORIGINAL ARTICLE

Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer

G.N. Hortobagyi, S.M. Stemmer, H.A. Burris, Y.-S. Yap, G.S. Sonke,
S. Paluch-Shimon, M. Campone, K.L. Blackwell, F. André, E.P. Winer, W. Janni,
S. Verma, P. Conte, C.L. Arteaga, D.A. Cameron, K. Petrakova, L.L. Hart,
C. Villanueva, A. Chan, E. Jakobsen, A. Nusch, O. Burdaeva, E.-M. Grischke,
E. Alba, E. Wist, N. Marschner, A.M. Favret, D. Yardley, T. Bachelot, L.-M. Tseng,
S. Blau, F. Xuan, F. Souami, M. Miller, C. Germa, S. Hirawat, and J. O'Shaughnessy

MONARCH 3: Abemaciclib As Initial Therapy for Advanced Breast Cancer

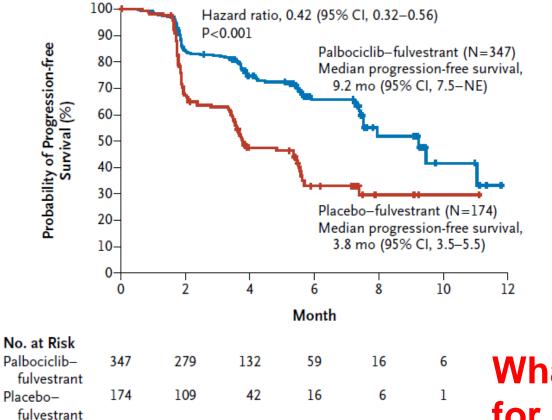

Matthew P. Goetz, Masakazu Toi, Mario Campone, Joohyuk Sohn, Shani Paluch-Shimon, Jens Huober, In Hae Park, Olivier Trédan, Shin-Cheh Chen, Luis Manso, Orit C. Freedman, Georgina Garnica Jaliffe, Tammy Forrester, Martin Frenzel, Susana Barriga, Ian C. Smith, Nawel Bourayou, and Angelo Di Leo



N Engl J Med 2016;375:1738-48.

J Clin Oncol 35:3638-3646. © 2017

Primary endocrine resistance

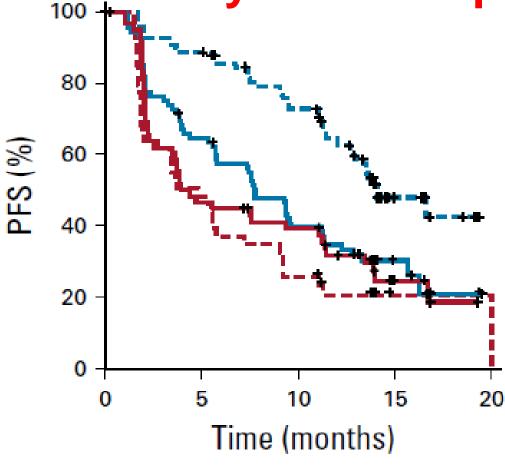

Molecular alteration in cancer cells?

11

Acquired resistance (Paloma 3 study)

Target population : non steroidal AI (nsAI) resistance patients

A Assessment by Investigators


Improve the PFS by Palbociclib (about 20%)

What is predictive marker of Palbociclib for nsAl resistance patients ?

Association of cell cycle pathway gene expression and efficacy of PAL in combination with FUL

Subgroup	No. of Patients (%)	Hazard Ratio	o HR	95% Cl	Interaction <i>P</i> (FDR)	_
Overall	521 (100)		0.501	0.401 to 0.624		
Gene expression (mRNA level)						
CCND1		I I			.503 (.858)	
Low by median	151 (29)	┟──■┼───┥	0.471	0.316 to 0.702		
High by median	151 (29)	┝┼═──┥│	0.594	0.385 to 0.917		
CDK4					.627 (.896)	
Low by median	151 (29)		0.509	0.334 to 0.776		
High by median	151 (29)		0.562	0.374 to 0.847		
CDK6					.515 (.858)	
Low by median	151 (29)		0.605	0.398 to 0.920		
High by median	151 (29)		0.483	0.320 to 0.729		
RB1					.123 (.308)	
Low by median	151 (29)	┝╼═┿╼┥	0.425	0.280 to 0.645		
High by median	151 (29)	Fi ∎H	0.672	0.438 to 1.029		
CDKN2A					.730 (.913)	
Low by median	151 (29)		0.504	0.334 to 0.761		
High by median	151 (29)		0.555	0.364 to 0.845		
CCNE1					.00238 (.0238)	
Low by median	151 (29)	┝╼═──┥	0.320	0.205 to 0.500		CCNE1 Low vs High
High by median	151 (29)		0.851	0.575 to 1.259		
CCNE2					.834 (.927)	
Low by median	151 (29)		0.513	0.337 to 0.780		
High by median	151 (29)		0.560	0.371 to 0.844		
CDK2					.102 (.308)	
Low by median	151 (29)		0.438	0.291 to 0.659		
High by median	151 (29)	┟┼┈┻──┼┦	0.679	0.443 to 1.041		
CCND3					.0631 (.308)	
Low by median	151 (29)		0.408	0.271 to 0.613		
High by median	151 (29)		0.720	0.470 to 1.104		
ESR1					.959 (.959)	
Low by median	151 (29)	. <u>⊢</u> ;=,	0.536	0.360 to 0.798		
High by median	151 (29)		0.531	0.344 to 0.820		
	0.01		1.25 1.5 1.75 2			Turner N, et al. JCO 37; 2019
	←	Favors PAL + FUL Fav	vors PBO + FUL 🔶			

Cyclin E1 expression Low vs High

Д

No. at risk:

--- Low: PAL + FUL (n = 103; mPFS, 14.1 months)

- Low: PBO + FUL (n = 48; mPFS, 4.8 months)
- High: PAL + FUL (n = 91; mPFS, 7.6 months)

High: PBO + FUL (n = 60; mPFS, 4.0 months)

Low: HR, 0.32 (95% Cl, 0.20 to 0.50) High: HR, 0.85 (95% Cl, 0.58 to 1.26) Interaction *P* = .00238

Cyclin E1 Expression and Palbociclib Efficacy in Previously Treated Hormone Receptor–Positive Metastatic Breast Cancer

Nicholas C. Turner, MD, PhD¹; Yuan Liu, PhD²; Zhou Zhu, PhD²; Sherene Loi, MD, PhD³; Marco Colleoni, MD⁴; Sibylle Loibl, MD, PhD⁵; Angela DeMichele, MD, MSCE⁶; Nadia Harbeck, MD, PhD⁷; Fabrice André, MD, PhD⁸; Mohamed Amine Bayar, MSc⁸; Stefan Michiels, PhD⁸; Zhe Zhang, MS²; Carla Giorgetti, PhD⁹; Monica Arnedos, MD⁸; Cynthia Huang Bartlett, MD¹⁰; and Massimo Cristofanilli, MD¹¹

Low: PAL + FU Low: PBO + FU High: PAL + FU High: PBO + FU High: PBO + FU

J Clin Oncol 37. © 2019 by American Society of Clinical Oncology

Acquired resistance of FUL + Palbociclib

Acquired resistance to palbociclib + FUL

FOT

Paloma3

87 genes associated with mammalian cell cycle, ER signaling, or breast cancer biology were hybridized to the library. All coding regions were covered with the exception of 7 genes (*BRAF, EGFR, KRAS, NOTCH1, NOTCH2, NOTCH3,* and *PIK3CA*) where only hotspot mutations were included.

Day1

Total paired day1 and EOT plasma sample N=194

In addition, matched samples were analyzed using droplet digital polymerase chain reaction (ddPCR, Bio-Rad[®] QX200) for *PIK3CA* and *ESR1* variants detected at baseline

AKT1	CDC25A	E2F2	FBXW7	HDAC5	MYCL	PA2G4	PPP2CB	SMAD4
AKT2	CDH1	E2F3	FOXA1	HRAS	MYCN	PELP1	PPP2R1A	TBL1XR
BCAR1	CDH2	E2F4	GATA3	IGF1	NOTCH1	PGR	PTEN	TFDP1
BRAF	CDK4	E2F5	GPER1	KRAS	NOTCH2	PHB2	PPP2R1B	TFF1
BRCA1	CDK6	E2F6	GPS2	MAP2K4	<i>NOTCH3</i>	<i>РІКЗСА</i>	RB1	ТР53
CCND1	CDKN1A	EGFR	GSK3B	МАРЗК1	NROB1	PIK3R1	RBL1	TPRX1
CCND2	CDKN1B	ERBB2	HDAC1	MED1	NROB2	PPP1CA	RBL2	WNT7A
CCND3	CDKN2A	ESR1	HDAC2	MTA1	NRAS	PPP1CB	RUNX	
CCNE1	CDKN2B	ESR2	HDAC3	МҮВ	NRG1	PPP1CC	SKP1	
CCNE2	E2F1	FABPS	HDAC4	МҮС	NRIP1	PPP2CA	SMAD3	

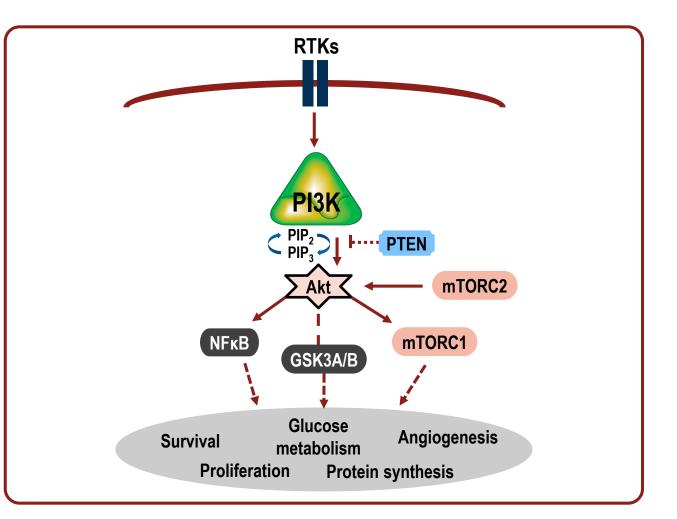
Change From Baseline in ctDNA Mutation Frequency

		PAL + FUL (n=127)		PBO + FUL (n=67)			
Gene	Day 1, n (%)†	EOT, n (%)†	P value*	Day 1, n (%)†	EOT, n (%)†	P value	
<i>РІКЗСА</i>	47 (37)	51 (40)	0.42	19 (28)	22 (33)	0.45	
ESR1	36 (28)	45 (35)	0.15	19 (28)	24 (36)	0.18	
TP53	30 (24)	33 (26)	0.45	23 (34)	25 (37)	0.68	
RB1	2 (2)	9 (7)	0.02	2 (3)	2 (3)	1	
PTEN	5 (4)	7 (6)	0.48	3 (4)	3 (4)	1	
AKT1	7 (6)	7 (6)	NA	2 (3)	2 (3)	NA	

- Gene level mutation analysis of EOT plasma revealed no significant difference between palbociclib plus fulvestrant vs placebo plus fulvestrant, with the exception of *RB1*.
 - -The most commonly observed mutations were in *PIK3CA*, *ESR1*, and *TP53*

CONCLUSIONS

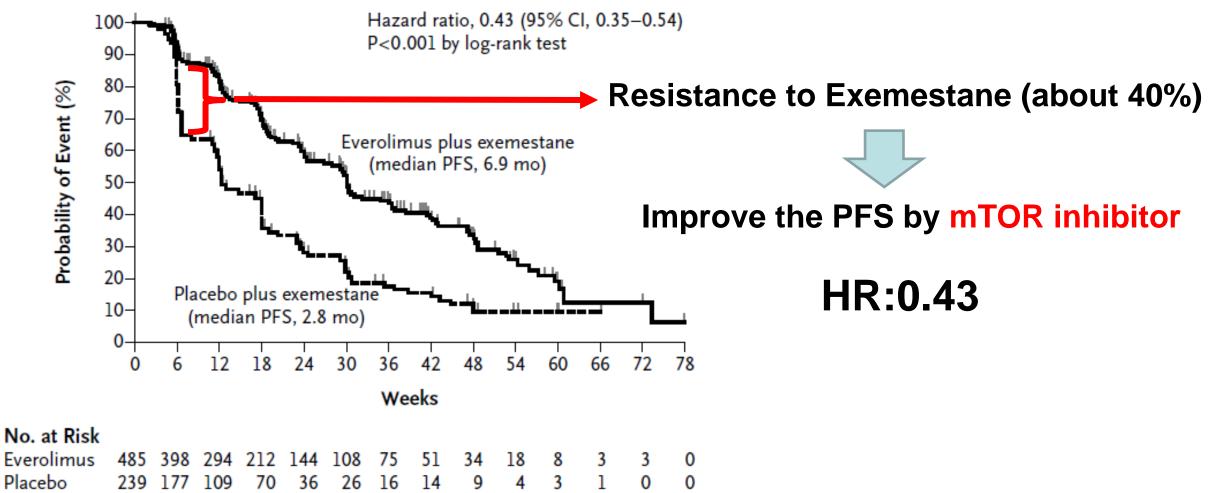
- The low prevalence of mutations in cell cycle control genes at EOT suggests that mutations in cell cycle genes may not be a common mechanism of resistance to CDK4/6 inhibitors in HR+/HER2– advanced breast cancer previously treated with endocrine therapy.
- No difference in genomic landscape was observed between palbociclib plus fulvestrant and fulvestrant plus placebo at the time of progression, which suggests that the main mechanism of disease progression is endocrine resistance.


Endocrine resistance mechanism

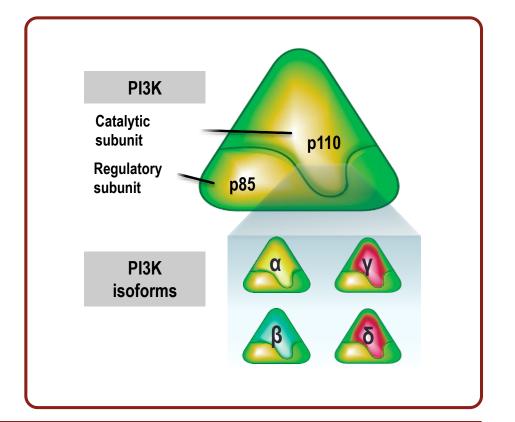
PIK3CA mutation

ESR1 mutation

The PI3K pathway

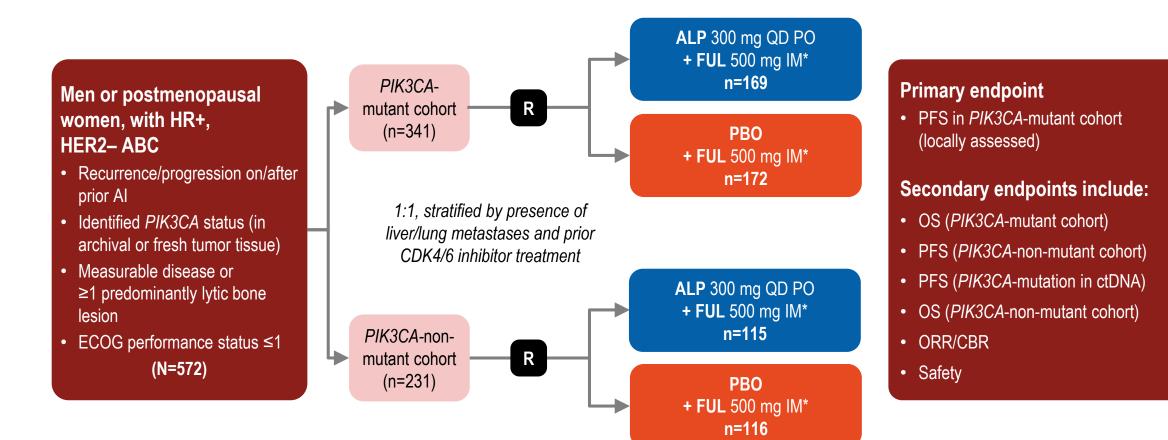

- PI3K is involved in the production of PIP₃, which activates Akt¹
- PI3K pathway hyperactivation is implicated in malignant transformation, cancer progression and endocrine therapy resistance^{1–4}
- Around 40% of patients with HR+, HER2– breast cancer present an activating tumor mutation of *PIK3CA*^{5,6} that leads to PI3K activation

Miller TW, et al. J Clin Oncol 2011;29:4452–4461; 2. Saal LH et al. Proc Natl Acad Sci U S A 2007;104:7564–7569;
 Hosford SR, Miller TW. Pharmgenomics Pers Med. 2014;7:203–215; 4. Shaw RJ & Cantley LC. Nature. 2006;441:424–430;
 The Cancer Genome Atlas Network. Nature 2012;490:61–70; 6. Mollon L, et al. AACR 2018 (poster 2107).

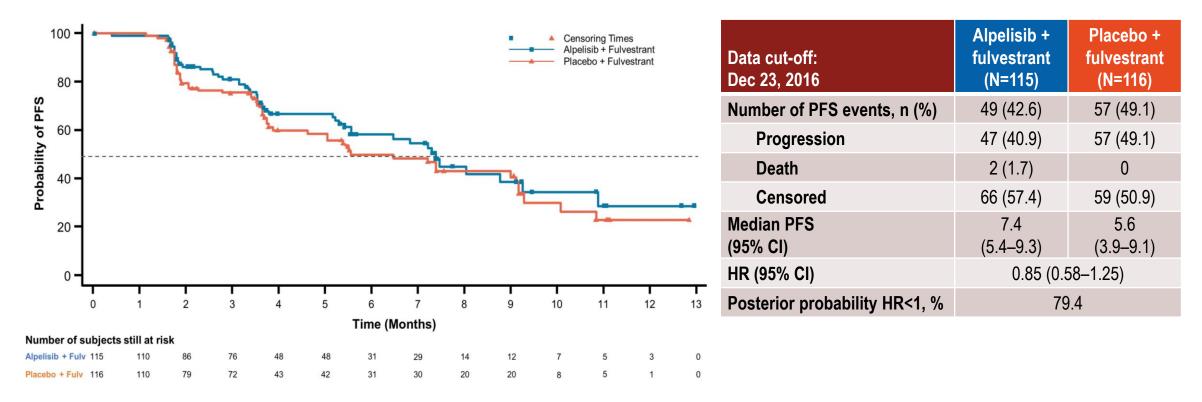

Acquired resistance cases to nsAl

A Local Assessment

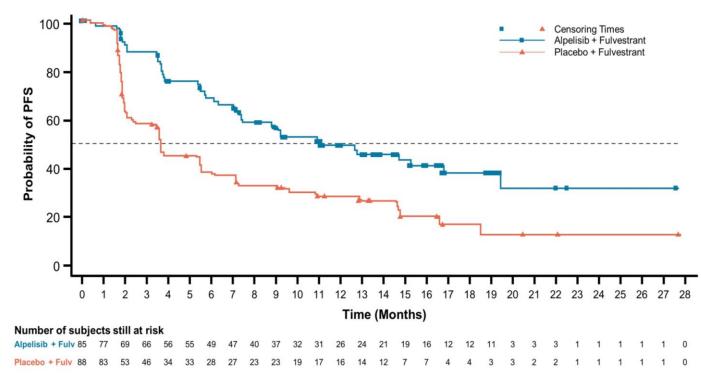
PIK3CA mutations and Alpelisib


- PI3K includes catalytic and regulatory subunits;
 PIK3CA encodes the α-isoform of catalytic subunit^{1,2}
 - Activation of this subunit can lead to pathway hyperactivation
- Pan-PI3K inhibitors target multiple isoforms of PI3K, leading to excess toxicities and marginal efficacy^{3–5}
- Alpelisib (BYL719) is a specific inhibitor of the PI3K α-isoform⁶
- Alpelisib has demonstrated antitumor activity in preclinical models harboring *PIK3CA* alterations⁶

There is a strong rationale for targeting the α -isoform of PI3K in patients with a *PIK3CA* mutation


1. Engelman JA. Nat Rev Cancer 2009;9:550–562; 2. Janku F. Cancer Treat Rev 2017;59:93–101; 3. Baselga J, et al. J Clin Oncol 2018;36 (Suppl): LBA 1006; 4. Di Leo A, et al. Lancet Oncol 2018 19(1):87–100; 5. Baselga J, et al. Lancet Oncol 2017;18(7):904–916; 6. Fritsch C et al. Mol Cancer Ther 2014;13:1117–1129.

SOLAR-1: A Phase III randomized, controlled trial (NCT02437318)


Proof of Concept: PFS in the *PIK3CA***-non-mutant cohort**

Proof of concept criteria were not met in the PIK3CA-non-mutant cohort

- Proof of concept criteria: estimated hazard ratio ≤0.60 and posterior probability ≥90% that the hazard ratio was <1
- Patients with *PIK3CA*-non-mutant disease were followed up for safety alongside the *PIK3CA*-mutant cohort

BIRC audit: Centrally assessed PFS in the *PIK3CA*-mutant cohort

Data cut-off: Jun 12, 2018	Alpelisib + fulvestrant (N=85)	Placebo + fulvestrant (N=88)			
Number of PFS events, n (%)	43 (50.6)	63 (71.6)			
Median PFS (95% CI)	11.1 (7.3–16.8)	3.7 (2.1–5.6)			
HR (95% CI)	0.48 (0.32–0.71)				

- Blinded independent review committee audit of 50% of randomized patients in the PIK3CA-mutant cohort (n=173)
- A full BIRC review of all patient data in the PIK3CA-mutant cohort was not required, based on prespecified thresholds

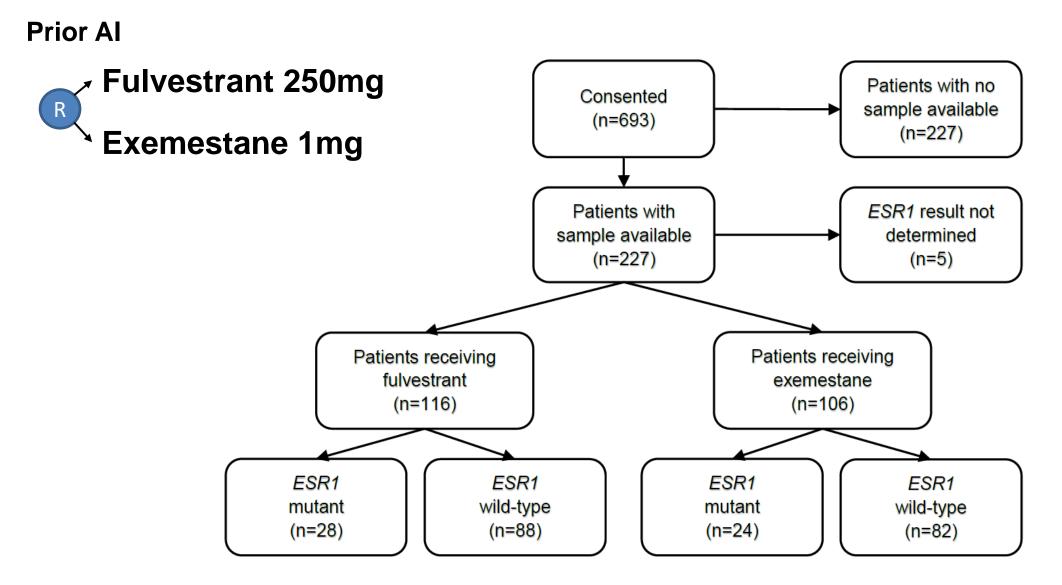
This presentation is the intellectual property of Fabrice Andre. Contact <u>Fabrice.andre@gustaveroussy.fr</u> for permission to reprint and/or distribute.

Endocrine resistance mechanism

PIK3CA mutation

Resistance to FUL

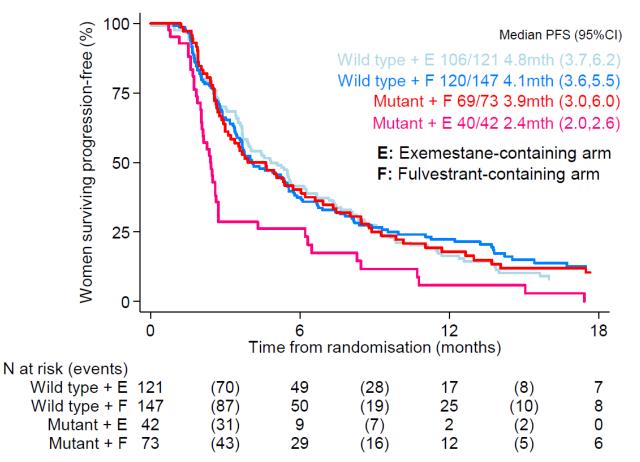
Improve by PIK3CA inhibitor (Alpelisib)


ESR1 mutation

Endocrine resistance mechanism

PIK3CA mutation

ESR1 mutation


EFECT study CONSORT diagram

Detection of ESR1 mutations at baseline is associated with shorter PFS in EFECT

ESR1 Mutant ESR1 Wild type 100 100 Unadjusted HR=0.67 95%CI (0.37, 1.19); p=0.17 Unadjusted HR=1.05 95%CI (0.75, 1.45); p=0.78 Women surviving progression-free (%) Women surviving progression-free (%) 75-75-**50** · 50 Fulvestrant 26/28 Fulvestrant 70/88 Median PFS=3.7mth 95%CI(3.3, 5.2) Median PFS=3.5mth 95%CI(1.9, 5.0) 25 25-Exemestane 74/82 Exemestane 22/24 Median PFS=4.5mth 95%CI(3.7, 5.6) Median PFS=2.0mth 95%CI(1.7, 2.4) 0 0 12 18 12 18 6 6 0 Ω Time from randomisation (months) Time from randomisation (months) N at risk (events) N at risk (events) Exemestane 24 Exemestane 82 (52) 28 (19) (3) 2 (19)3 (3) 0 (0) 0 5 Fulvestrant 28 7 (6)0 (0)Fulvestrant 88 (56)23 (12)6 (2)0 (20)0

SoFEA and EFECT meta-analysis for baseline detection of ESR1 mutations

Patients with ESR1 mutation detected on fulvestrant had improved PFS compared to exemestane (HR=0.59, 95%CI: 0.39, 0.89; p=0.01). For patients with ESR1 wild type there was no difference in PFS between treatments (HR=1.05, 95%CI: 0.81, 1.37; p=0.69). Interaction test p=0.02

Endocrine resistance mechanism

PIK3CA mutation

ESR1 mutation

Biomarker of AI resistance

Other therapies to endocrine resistance

HDAC inhibitor (Entinostat)

IGF mAb (Xentuzumab)

Other therapies to endocrine resistance

HDAC inhibitor (Entinostat)

IGF mAb (Xentuzumab)

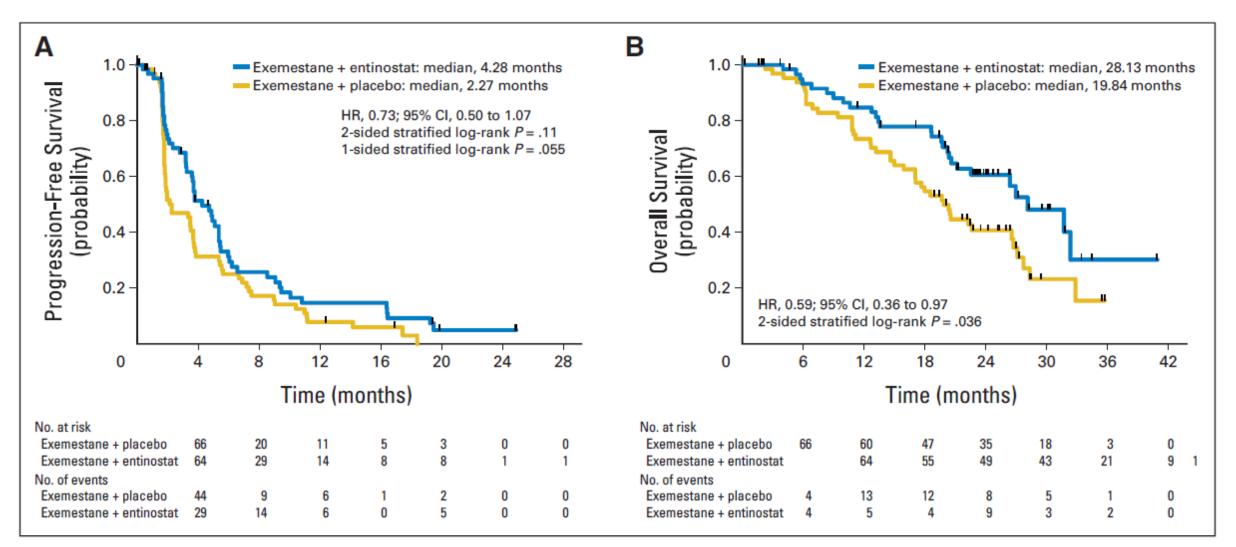
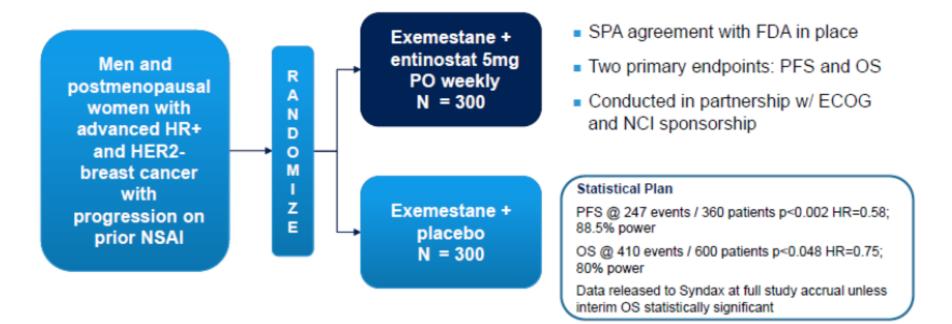
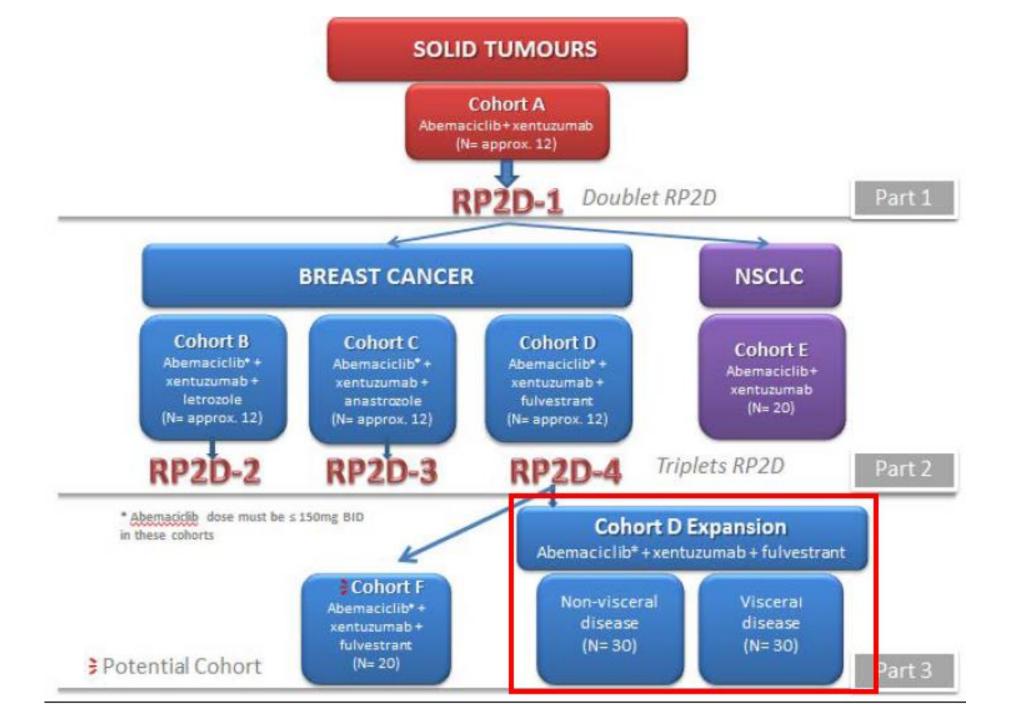



Fig 2. Kaplan-Meier estimates of (A) progression-free survival (PFS) and (B) overall survival (OS). (A) Vertical tick marks represent the PFS time of patients without progressive disease. (B) Vertical tick marks represent the survival time of patients alive or lost to follow-up as of the last contact.

Global Phase 3


Clinical Trial can be considered successful if either primary endpoint (PFS or OS) is positive

Other therapies to endocrine resistance

HDAC inhibitor (Entinostat)

IGF mAb (Xentuzumab)

Review Article

Frontiers in Medicine Application of Cell-free DNA Analysis to Cancer Treatment Rvan B. Corcoran, M.D., Ph.D., and Bruce A. Chabner, M.D.

Tumor biopsies represent the standard for cancer DNA (cfDNA) diagnosis and the primary method for molecular testing to guide the selection of from plasma, are rapidly emerging as an important and minimally invasive adjunct to standard tumor biopsies and, in some cases, even a potential alternative approach. Liquid biopsy is becoming a valuable tool for molecular testing, for new insights into tumor heterogeneity, and for cancer detection and monitoring. Here, we review the current and potential clinical applications of cfDNA analysis in patients with cancer (see video).

NEJM 379:18 November 1, 2018

	Cell-free circulating tumor DNA
11	Minute fractions of ctDNA Background of cfDNA

Tumor DNA is Present in Blood at Exceedingly Low

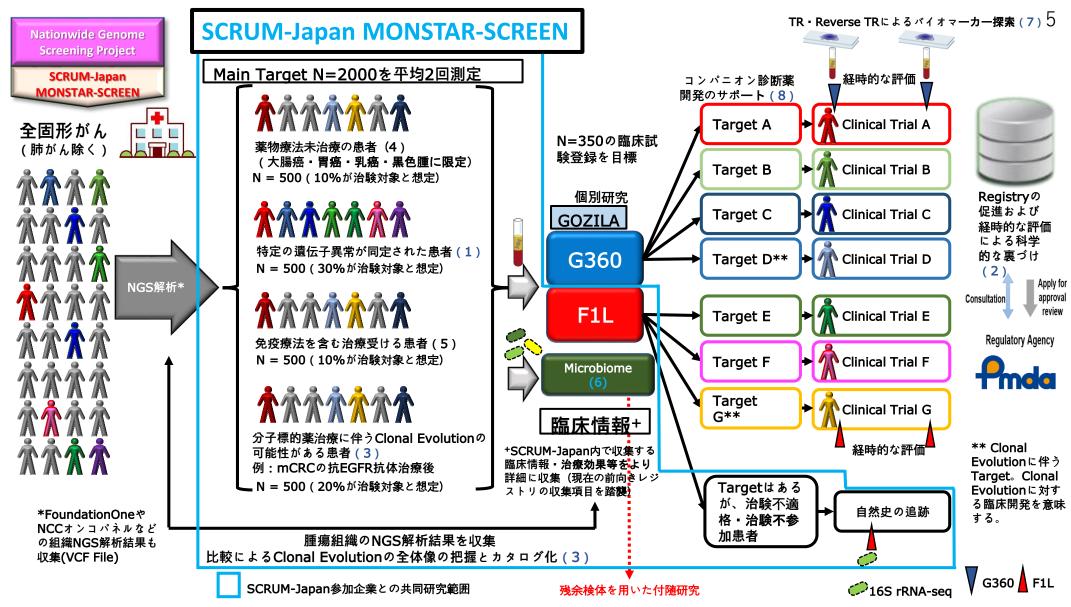
Concentrations

All NCCN Somatic Genomic Targets with a Single Test

Point Mutations - 73 Genes

AKT1	ALK	APC	AR	ARAF	ARID	1A	ATM	BRA	F BR	CA1	BRCA2
CCND1	CCND2	CCNE1	CDH1	CDK4	CDK	6	CDKN2	A CTNN	B1 DL	DR2	EGFR
ERBB2 (HER2)	ESR1	EZH2	FBXW7	FGFR1	FGFF	R 2	FGFR3	GATA	43 GN	IA11	GNAQ
GNAS	INF1A	HRAS	IDH1	IDH2	JAK	2	JAK3	кп	KF	RAS	MAP2K1 (MEK1)
MAP2K2 (MEK2)	MAPK1 (ERK2)	MAPK3 (ERK1)	MET	MLH1	MPL	L	MTOR	MY	n n	F1	NFE2L2
NOTCH1	NPM1	NRAS	NTRK1	NTRK3	PDGF	RA	РІКЗСА	A PTE	N PTF	PN11	RAF1
RB1	RET	RHEB	RHOA	RIT1	ROS	1	SMAD4	smo	ST ST	K11	TERT**
TP53	TSC1	VHL						** Inc	ludes TERI	r promo	ter region
Indels – 23	3 Genes										
ATM	APC	ARID1A	BRCA1	BRCA2	CDH1		CDKN2A	EGFR	ERBB	2	GATA3
κιτ	MET` ex14	MLH1	MTOR	NF1	PDGFR	4	PTEN	RB1	SMAL	04	STK11
TP53	TSC1	VHL									
Amplifications – 18 Genes											
AR	BRAF	CCND1	CCND2	CCNE		CDK4		CDK6	EGFR	E	RBB2
FGFR1	FGFR2	κιτ	KRAS	MET	I	иус	F	PDGFRA	PIK3CA	F	RAF1
Fusions – 6 Genes MSI: Hig									. Hia		

ALK FGFR2 FGFR3 RET ROS1 NTRK1


GUARDANT

12

Treatment decision according to liquid biopsy for MBC

Overall Picture

Strictly Confidential

Conclusion to near future

- New approach based on response-guide therapy for PBC
- New approach based on innovative technology and new drug development for MBC